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[1] The key question that is asked in this study is ‘‘how are the three independent bias
components of satellite rainfall estimation, comprising hit bias, missed, and false
precipitation, physically related to the estimation uncertainty of soil moisture and runoff
for a physically based hydrologic model?’’ The study also investigated the performance
of different satellite rainfall products as a function of land use and land cover (LULC)
type. Using the entire Mississippi river basin as the study region and the variable
infiltration capacity (VIC)-3L as the distributed hydrologic model, the study of the
satellite products (CMORPH, 3B42RT, and PERSIANN-CCS) yielded two key findings.
First, during the winter season, more than 40% of the rainfall total bias is dominated by
missed precipitation in forest and woodland regions (southeast of Mississippi). During the
summer season, 51% of the total bias is governed by the hit bias, and about 42% by the
false precipitation in grassland-savanna region (western part of Mississippi basin).
Second, a strong dependence is observed between hit bias and runoff error, and missed
precipitation and soil moisture error. High correlation with runoff error is observed with
hit bias (�0.85), indicating the need for improving the satellite rainfall product’s ability
to detect rainfall more consistently for flood prediction. For soil moisture error, it is the
total bias that correlated significantly (�0.78), indicating that a satellite product needed to
be minimized of total bias for long-term monitoring of watershed conditions for drought
through continuous simulation.
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1. Introduction
[2] Precipitation (hereafter used synonymously with

‘‘rainfall’’) is one of the most important atmospheric inputs
for hydrologic model simulation. Precipitation dominates
the spatial and temporal variability of other hydrological
variables (such as soil moisture, runoff, and evapotranspira-
tion) [Syed et al., 2004; Famiglietti et al., 1995]. About
70%–80% of space-time variability in the hydrologic cycle
is reportedly dictated by precipitation variability. Because
precipitation is the key element of the hydrologic cycle, its
quantitative estimation is essential for hydrologic modeling
in both scientific and applied research. The accuracy of

hydrologic prediction depends, among many factors, on the
accuracy of the model input, the primary one being rainfall.

[3] Rainfall measurement from the ground using conven-
tional methods is more direct and reliable than satellite-
based rainfall [Villarini et al., 2008], but it lacks the desired
spatial and temporal sampling needed to achieve a high-
resolution rendition of the terrestrial hydrologic fluxes in
the continuum of space and time. The major concern for the
hydrologist is the representativeness of point measurements
for areally averaged rainfall which is the usual input to dis-
tributed and physically based hydrologic models [Habib
et al., 2004]. This issue becomes more important when we
consider that ground observation networks are either
sparse, nonexistent, or declining for most parts of the world
[Stokstad, 1999; Shiklomanov et al., 2002]. More impor-
tantly, precipitation’s spatial variability and intermittent na-
ture makes it difficult to observe using the conventional
ground-based rain gauge method. These practical limita-
tions of ground rain gauge networks have prompted increas-
ingly wider use of spaceborne observation of rainfall as an
indispensable bridge to quantifying precipitation fluxes over
large and inaccessible areas [Anagnostou et al., 2010; Tian
et al., 2009; Hong et al., 2007; Gottschalck et al., 2005].

[4] With a capability to provide rainfall estimates for
data sparse regions not well covered by gauges or ground
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radars (e.g., water bodies, mountainous and remote desert
areas), satellite rainfall estimates are a promising additional
source of forcing data for large scale hydrologic modeling
[Nijssen and Lettenmaier, 2004; Tian and Peters-Lidard,
2010]. Many efforts have been undertaken to fulfill the
demand of the scientific community in providing accurate
satellite rainfall estimates at hydrologically relevant spatio-
temporal scales [Hsu et al., 2010; Huffman et al., 2007;
Joyce et al., 2004; Sorooshian et al., 2000]. The studies
have collectively contributed to the progress made from 1
deg spatial and monthly time scales [Huffman et al., 1997;
Huffman et al., 2001; Adler et al., 2003] to 0.25 deg spatial
and hourly temporal scale [Huffman et al., 2007; Joyce
et al., 2004; Sorooshian et al., 2000; Joyce and Xie, 2011,
Ushio et al., 2009, Behrangi et al., 2010; Hong et al.,
2004] to make satellite rainfall data potentially more useful
as a forcing for macroscale hydrologic modeling.

[5] In the evolution of space technology, the next prom-
ising and future global rainfall data source that is founded
on the heritage of Tropical Rainfall Measuring Mission
(TRMM) and preceding satellite missions, is the Global
Precipitation Measurement (GPM) Mission. The planned
GPM mission will provide rainfall estimates at spatial reso-
lutions of 25–100 km2 and temporal scales of 3 to 6 h for
about 90% of global coverage [Hou et al., 2008]. Rainfall
estimates from GPM hold great promise for river flow mod-
eling, water resource management, flood and drought disas-
ter management, and environmental protection. In particular,
GPM and its associated rain products will be the only avail-
able rainfall data source for many parts of the world.

[6] Although the overall progress and improvements in
satellite rainfall measurement from space has been notable
for hydrologic modeling and other applications, the level of
uncertainty associated with rainfall estimation and sam-
pling frequency is still significant [Hossain and Huffman,
2008; Nijssen and Lettenmaier, 2004; Chang and Chiu,
1999]. Nijssen and Lettenmaier [2004] evaluated the effect
of precipitation sampling errors on simulated moisture
fluxes and states by forcing a macroscale hydrologic model
with error-corrupted precipitation fields for different tem-
poral sampling and spatial scales. They found that simu-
lated satellite precipitation (with sampling errors similar to
that expected from the constellation of passive microwave
sensors) exhibited significant errors in moisture fluxes and
states. They also showed that the propagated error in simu-
lated fluxes and states significantly reduced for larger areas
and longer sampling intervals. For instance, for 2500 km2

and a 3 h sampling interval, the areally averaged root mean
square error (RMSE) was greater than 50%, which reduced
to 10% for 500,000 km2. Tian and Peters-Lidard [2010]
produced such a satellite rainfall uncertainty map at global
scale by computing the standard deviation from the ensem-
ble mean of different satellite rainfall products at every
grid box and time step without ground validation data.
Their study reported the occurrence of less uncertainty over
oceans and large uncertainty over the surfaces at high ele-
vations where the orographic rainfall processes present sig-
nificant challenges for satellite-based remote sensing of
precipitation.

[7] Several other studies have recently emerged on the
application of TRMM-based multisatellite rainfall products
for hydrologic modeling (Nijssen and Lettenmaier [2004],

Su et al. [2008], and Gebregiorgis and Hossain [2011],
among many others). It is crucial for hydrologists now to
understand how rainfall uncertainties affect hydrologic pre-
dictability. Many of the available satellite rainfall products
are developed directly or indirectly from merging of infrared
(inferior rectus (IR)) and passive microwave (PMW) sensors
estimates based on different algorithmic approaches. For
instance, the 3B42RT algorithm [Huffman et al., 2010] uses
MW data to calibrate IR estimates to obtain a merged product
from MW and calibrated IR when and where PMW estimates
are unavailable. The CMORPH algorithm [Joyce et al., 2004]
utilizes the IR estimates only to derive the cloud motion field
that helps to propagate the rainfall estimates of PMW data.
The PERSIANN (precipitation estimation from remotely
sensed information using artificial neural networks) algorithm
utilizes the relationship between IR and MW estimates as
derived from artificial neural network techniques and the rain-
fall estimates are then obtained from the MW data downscaled
to the IR footprint. There are different versions of PERSIANN
products. The first algorithm (PERSIANN) [Sorooshian et al.,
2000] uses gridded IR brightness temperature obtained from
geostationary satellites to compute the corresponding gridded
rainfall rate by adjusting the model parameters routinely to
PMW rainfall estimates. This product is available at spatial re-
solution of 0.25 deg � 0.25 deg and temporal scale of 30 min
which is later converted to a 6 h rainfall accumulation. The
second PERSIANN version is developed based on patch cloud
classification system (PERSIANN-CCS) [Hong et al., 2004;
Hong et al., 2005; Hsu et al., 2010]. The cloud images are
classified into cloud patch regions based on cloud height, areal
extent, and texture features extracted from satellite imagery.
Finally, a relationship between rain rate and brightness tem-
perature is established for pixels within each cloud patch
region. GSMap [Ushio et al., 2009] is also another satellite
rainfall product which uses a similar technique as CMORPH
in propagating the PMW derived precipitation field using the
IR-derived motion vectors, but unlike the CMOPRH algo-
rithm, it also uses cloud top brightness temperature to propa-
gate precipitation estimates. Among the discussed rainfall
algorithms, CMORPH, GSMaP, and PERSIANN-CCS offer
resolutions higher than 3 h and 0.25 deg.

[8] Recognizing the vast complexity and interdependen-
cies of the multiple sensors used in quasi-statistical rainfall
algorithms of today, Gebregiorgis and Hossain [2011] dem-
onstrated a multiproduct merging method that leverages the
a priori uncertainty of individual products. Therein, they
reported that it is indeed feasible to create a more superior
merged product by making skillful and complementary use
of the uncertainty of each individual product in hydrologic
model simulation of the fluxes (such as soil moisture and
runoff). Runoff and soil moisture based merged products
improved the runoff and soil moisture simulation. On aver-
age the RMSE of streamflow with runoff based merged
product decreased by 41%, 82%, and 60% and soil moisture
based merged product by 50%, 79%, and 53% for 3B42RT,
CMORPH, and PERSIANN-CCS products, respectively.

[9] The natural follow-up question now is, how can we
implement such a multiproduct merging approach in regions
where there is no ground truth data to derive a priori esti-
mates of uncertainty? A recent study by Tang and Hossain
[2011] on the similarity of satellite rainfall error as a function
of Koppen climate class reported that certain measures of
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rainfall uncertainty can be clustered according to climate and
terrain type. Their study showed promise in ‘‘transferring’’
error information from a gauged region to an ungauged
region with similar climate characteristics. Similarly, there
are also other studies that report the performance of rainfall
products as a strong function of the region and topography.
For example, most TRMM-based products that do not utilize
comprehensively the precipitation radar (PR) data are known
to be generally weak in detecting orographic precipitation
[Dinku et al., 2010]. In particular, the poor performance of
some of the commonly used multisensor products over the
Himalayas, Andes, or the Ethiopian highlands, is now well
known [Dinku et al., 2007; Hirpa et al., 2010]. Thus, it
appears that multiproduct merging can potentially improve
further from an investigation of climate, land use and land
cover (LULC), and terrain features in dictating the rainfall
estimation uncertainty.

[10] The present study is driven by the need to raise
more awareness and understanding about the complex
interrelationship between uncertainty of rainfall and hydro-
logic simulation (of key fluxes such as soil moisture and
runoff errors) as a function of LULC and terrain features.
To make the study directly relevant to data product devel-
opers engaged in improving their algorithms for GPM, this
study traces the source of error observed in hydrologic pre-
dictability to the input (rainfall) error predecomposed into
easy to understand independent components. Such compo-
nents, by virtue of the power of their simplicity and physi-
cal significance, stand to provide tangible feedback to
developers on how exactly algorithms may need to be re-
vised to advance their application for hydrology. The study
is conducted on a continental scale (the Mississippi River
basin) using multiyear data sets to arrive at statistically ro-
bust and comprehensive findings at regions with similar
LULC.

[11] The paper is organized as follows. Description of the
study area, hydrologic model, and data used are introduced

in section 2. The methodology of satellite rainfall error
decomposition and the linkage to hydrologic simulation error
are elaborated in section 3. Section 4 presents the results of
the study, focusing particularly on spatial and temporal char-
acteristics of satellite rainfall uncertainty and the interrela-
tionship with soil moisture, runoff errors, and LULC. Finally,
conclusions and recommendations of the study are presented
in section 5.

2. Study Area, Model and Data
2.1. Study Area

[12] The Mississippi River Basin (MRB), which is the
largest basin in North America (Figure 1), was chosen as the
study region. Because of diverse topography, climate, and
LULC types over an area of about 3 million km2, that are
also witnessed in other parts of the world, the MRB was ideal
for the study objectives. The topography of the basin varies
from low-lying areas of 1 m to high elevation areas 4500 m
above sea level (a.s.l). For this particular study, three LULC
types were considered at six different geographical locations.
These LULC data was derived from United States Geological
Survey, National Land Cover Database [NLCD2001] at spa-
tial resolution of 0.004 deg, source: http://www.mrlc.gov/
nlcd01_data.php. Figure 1 (left) shows the location of the
study zones with LULC type in MRB, which are (1) forest
and woodland (zones A1 and B1); (2) cropland system
(agriculture and irrigation practice) (zones C2 and D2); and
(3) grassland and savanna systems (zones E3 and F3). The
size selection of each LULC zone was determined based on
the areal extent of LULC type that was dominant in the
region. Each zone needed to enclose large number of pixels
of the same LULC type to yield statistically significant
results. The percentage coverage of the designated LULC
type within a given zone varied from 82% for zone A1 to
98% for zone F3. Detailed description of location, percentage

Figure 1. (left) Location of Mississippi basin in United States of America and (right) land use/land
cover (LULC) map with the selected study zones. Zone nomenclature: Zone xy where x indicates the
location of specific region and y shows the LULC type defined by 1 forest and woodland systems;
2 human land use (cropland) system; and 3 savanna and grassland systems.
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coverage by the dominant LULC type, elevation, and LULC
features of each zone are summarized in Table 1.

2.2. Model and Data

[13] A variable infiltration capacity (VIC) macroscale
hydrologic model [Liang et al., 1994] was implemented to
simulate land surface states and fluxes for MRB at the daily
time step and a spatial resolution of 0.125 deg. The model
setup and calibration were performed based on gridded
ground observation data sets obtained from the University
of Washington [Maurer et al., 2002]. Using the calibrated
model and forcing data sets, land surface fluxes (soil mois-
ture and runoff) were generated. These model-derived sur-
face fluxes, derived from gridded ground observations,
were used as ‘‘synthetic’’ truth data to evaluate the per-
formance of satellite rainfall products in simulating soil
moisture and runoff as a function of LULC and error type.
The study period considered was 8 years (2003–2010).
Analysis was broken down seasonally to winter (December,
January, and February [DJF]) and the summer (June, July,
and August [JJA]) and for some of the cases, the result was
presented only for 2006 and 2010 to allow sufficient model
spin up and focus on a period with the highest number of
microwave sensors for the satellite algorithms.

[14] Generally, the realism of the synthetic data depends
highly on the choice and quality of the ground truth data
sets injected into the model, which likely affects the find-
ing of this study. Therefore, to minimize such impact and
ensure accuracy of simulated runoff and soil moisture, the
ground rainfall data was first checked against NEXRAD-
IV (next-generation radar of stage IV) data (Figure 2a,
left). In addition, the VIC model parameters, such as vari-
able infiltration curve parameter, maximum velocity of
base flow, fraction of maximum soil moisture, fraction of
velocity of base flow, and depth of soil layers, were cali-
brated at seven and validated at 12 internal gauging sta-
tions of MRB using simulated and observed streamflow
(Figure 2b).

[15] The selection of gauging stations was driven by the
need to minimize the impact of human regulation of flow.

The selection of stations (as shown in Figure 2b) was guided
by three rules. (1) Less regulated watersheds regions were
considered for validation and calibration, for example Min-
nesota River near Jordan. (2) To adequately represent the
basin wide response, several small-sized watersheds were
selected. For example, Kentucky River at Lockport (area
6180 sq. mi), French Broad River near Newport (area 1858
sq. mi), Wabash River at Mt. Carmel (area 28,635 sq. mi);
and Quachita River at Camden (5360 sq. mi). (3) On regu-
lated rivers, stations located upstream or very far downstream
of the dam have been considered, for example Canadian
River at Calvin, Quachita River at Camden, and Missouri
River at Hermann. Through these three rules we have com-
pletely avoided gauging stations that are influenced heavily by
human regulation of streamflow. As seen in Figure 2a (right),
there is strong agreement between the simulated and observed
streamflow according to measures of correlation coefficient
and efficiency. Both performance measures provided the nec-
essary confidence in hydrologic model simulation.

[16] The forcing data set for the VIC model includes the
major observed meteorological variables, such as precipita-
tion, minimum and maximum temperature, wind speed,
vapor pressure, incoming long-wave and short-wave radia-
tion, and air pressure. For the contiguous United States, the
meteorological forcing data set were processed and made
available for users by the University of Washington (see
Acknowledgments). To prepare the gridded ground rainfall,
the daily ground precipitation data was collected from the
National Oceanic and Atmospheric Administration (NOAA).
The average density of gauge stations used in gridding pro-
cess was 700 km2/station, or equivalently on average 7200
stations in the study region (MRB). According to Maurer
[2002], this precipitation data were gridded to spatial resolu-
tion of 0.125 deg using the synergraphic mapping system
(SYMAP) algorithm. Finally, the gridded data set were stat-
istically adjusted using the parameter-elevation regressions
on independent slopes model (PRISM) to consider local var-
iations due to terrain complexity. More importantly, before
using these data sets for the study objectives, both qualitative
and quantitative comparisons were performed with the

Table 1. Detail Description of Study Zonesa

Region/Zone Location LULC Type Coverage (%) Detail Description

A1 S Arkansas Woodland and forest
systems

82 Mainly dominated by mixed and deciduous broadleaf forest.
Small and scattered savanna woody also exists in central part of
the region. Elevation ranges from 60 to 400 m.

N Louisiana
SE Oklahoma

B1 E Central Tennessee Woodland and forest
systems

94 Characterized by mixed and deciduous broadleaf forest and
dispersed cropland. Elevation varies from 250 to 1000 m.S Kentucky

C2 S Iowa Cropland system 97 Cropland is the dominant land use system of this region. Few
deciduous broadleaf forests also exist. Elevation is between
200 snd 300 m.

N Missouri
NE Kansas
E Nebraska

D2 W Mississippi Cropland system 96 This region extends along either side of main lower Mississippi
river which is dominated by irrigation cropland system.
Elevation ranges between 30 and 100 m.

E Arkansas

E3 C South Dakota Grassland and
savanna systems

97 Dominated by grassland and savanna systems. Its elevation
extends from 700 to 1300 mS North Dakota

NC Nebraska
F3 E Colorado Grassland and

savanna systems
98 Grassland, open shrubland, and savanna are the dominate land

use system. Elevation ranges from 1300 to 2000 m.NE New Mexico

aN is north, S is south, E is east, W is west, SE is southeast, NE is northeast, and NC is north central.
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Figure 2. (a) Qualitative comparison of gridded ground with NEXRAD-IV rainfall record for two
randomly selected days (left four panels); correlation of gridded and NEXRAD-IV average rainfall over
Mississippi basin (bottom left panel) ; model calibration (2003–2004) and validation (2005) of VIC
model using observed streamflow at two gauging stations (right panels). (b) Selected hydrological gaug-
ing stations for the purpose of calibration and validation of VIC model over Mississippi River basin.
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NEXRAD-IV data set on MRB for the purpose of validation
(Figure 2, left). The mean daily rainfall of the gridded and
NEXRAD-IV data sets agreed very well, with a correlation
coefficient of 0.98.

[17] The error characteristics of three satellite rainfall
products were investigated in runoff and soil moisture sim-
ulation. The surface runoff rate generated from each grid
cell was considered as runoff. The routable portion of sub-
surface runoff was not included in the analysis as runoff.
Computation related to runoff was generally performed at
spatial resolution of 0.125 deg. On the other hand, the VIC
model simulates the soil moisture in three different soil
layers. The upper layer is the top 10 cm soil depth which
represents the dynamic behavior of the soil that responds to
the weather-scale meteorological processes, whereas the
lower two layers characterize the seasonal and long-term
soil moisture behavior. Even though the upper soil layer
has a smaller thickness compared to the lower layers, the
memory effects could contaminate the transient temporal
behavior of the soil moisture error. To minimize such
impacts, the soil moisture information in the top layer was
extracted for each pixel at the beginning of a time step
W i�

1 ½t� and end of time step W iþ
1 ½t� where i and t represent

the pixel number and time step, respectively. The differ-
ence between the two values (if it exists) is considered as
the memory-less (fast) response of the soil moisture column
to rainfall at that particular time step. This difference was
also considered as the daily soil moisture production and
used in the computation of percentage of runoff and soil
moisture production.

[18] The volume of soil moisture production due to the
rainfall intensity at daily time step t for pixel i (�W1

i[t]) is
given by equation (1):

�W i
1½t� ¼ W iþ

1 ½t� � W i�
1 ½t�: (1)

The total spatial sum of runoff and soil moisture production
(Rj

tot and W j
tot, respectively) for zone j during the summer

season are computed per equations (2) and (3):

Rj
tot ¼

Xn

t¼1

Xm

i¼1

Ri½t�; (2)

W j
tot ¼

Xn

t¼1

Xm

i¼1

�W i
1½t�; (3)

where n is the number of days in the summer season and m
is the number of pixels in zone j.

[19] Finally, to compute the daily percentages of runoff
and soil moisture production with respect to daily ground
rainfall intensity, equations (4) and (5) are used:

Rj
%½t� ¼

Xm

i¼1

Ri½t�

Rj
tot

;
(4)

W j
%½t� ¼

Xm

i¼1

�W i
1½t�

W j
tot

:
(5)

[20] The multisensor satellite rainfall products consid-
ered were 3B42RT [Huffman et al., 2010; Huffman et al.,
2007], CMORPH [Joyce et al., 2004], and PERSIANN-
CCS [Hong et al., 2004]. All three satellite rainfall products
are available to end users in near real time that favor the de-
velopment of various decision-making tools. 3B42RT is one
of the products provided by the TRMM multisatellite pre-
cipitation analysis (TMPA) algorithm at a spatial resolution
of 0.25 deg � 0.25 deg and a temporal sampling of 3 h
[Huffman et al., 2010]. It is a combination of PMW and
PMW-calibrated IR data merged in a manner that MW pre-
cipitation estimate is considered where it is available, and
the IR estimate is used to fill the gap (in space and time)
elsewhere. CMORPH is a high-resolution satellite rainfall
product known as the climate prediction center (CPC) using
MORPHing technique. This product is also available at a
spatial resolution of 0.25 deg and temporal resolution of
3 h. This product uses rainfall estimates from MW exclu-
sively and the rainfall patterns are propagated in space and
time via motion vectors obtained from IR data to bridge the
MW sampling gaps [Joyce et al., 2004]. PERSIANN-CCS is
based on extraction of cloud features from IR imagery of a
geostationary satellite to derive rainfall estimates at finer scale
(0.04 deg � 0.04 deg) and hourly temporal resolution using
MW data as a guide for the artificial neural network. These
key data products essentially use the same suite of PMW and
IR sensors, such as advanced microwave sounding unit
(AMSU), TRMM microwave imager (TMI), special sensor
microwave/imager (SSM/I), advanced microwave scanning
radiometer for Earth observing system (AMSR-E), IR sensor
aboard geostationary operational environmental satellite
(GOES), etc.

3. Error Decomposition
[21] In a demonstration of error decomposition, Tian et al.

[2009] have outlined a general scheme of breaking down
total rainfall error (hereafter used interchangeably with ‘‘total
bias’’) into three independent components: hit error H,
missed precipitation –M, and false precipitation F. Figure 3
illustrates the concept of false, hit, and missed precipitation
of satellite rainfall observation relative to ground observa-
tion. According to Figure 3, H represents observed rainfall
events which are detected by both satellite and ground vali-
dation data (hits), M shows missed rainfall events by the sat-
ellite but detected by the validation data, and F indicates
false observation of rainfall events by the satellite which are
not reported by the reference data. On the same figure, an
example is provided to illustrate the total error decomposi-
tion into completely independent hit bias, missed, and false
precipitation for individual grid cells.

[22] In this study, the total error E (or bias) is defined as
satellite estimate minus ground reference (error unit in
mm d�1 as the rainfall). Hit error H indicates the discrep-
ancy between the satellite and ground rainfall data given
both data report rainfall coincidently and as a result, hit
error could be positive or negative. On the other hand,
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missed M and false F errors have always negative and
positive signs, respectively. The relation between the total
rainfall error E and error components can be expressed as
E ¼ H – M þ F. For a detailed explanation, readers are

referred to Tian et al. [2009] and Wilks [1995]. It is obvious
from the above error relationship that the magnitude of the
total error cannot completely characterize the full measure
of performance for satellite rainfall products. For example,
M and F can cancel each other as they have opposite signs,
resulting in a low total bias (E) but not necessarily a low
hydrologic simulation error that is dictated by the compo-
nents [Tian et al., 2009]. Therefore, breaking down the
total satellite rainfall error into its distinct components
(H, �M, and F) helps us to gain a clearer picture of error
amplitudes so that the performance of the algorithm for sat-
ellite rainfall product can be evaluated in more detail. More
importantly, breaking down of the total error into such
components helps to trace the source of error that propa-
gates into soil moisture and runoff through a hydrologic
model. It also helps to constrain the error behavior as a
function of LULC and runoff generation physics. Eventu-
ally, this knowledge is expected to improve satellite rainfall
algorithm development, application, and the data assimila-
tion scheme in the future.

4. Results
4.1. Satellite Rainfall, Soil Moisture and Runoff
Production

[23] To reduce visual cluttering, Figure 4 compares the
variability of the 31 day moving average time series of satel-
lite rainfall and ground (reference) data. Although time series
of satellite rainfall products capture the temporal trend of the
reference rainfall data in all zones (except PERSIANN-CCS
in zone E3), CMORPH and PERSIANN-CCS generally
overestimate the rainfall magnitude during the summer

Figure 4. A 31 day of moving average time series of rainfall estimates spatially averaged over zone
A1 (forest and woodland), zone C2 (cropland), and zone E3 (savanna-grassland).

Figure 3. Diagram showing hits (H), misses (M), and
false alarms (F) for dichotomous variables (satellite rainfall
estimate and ground observation) and simple exemplary ta-
ble that shows how error components are identified and
separated at basin gridcell level (unit in mm d�1).
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season. Particularly, the overestimation is significantly high
almost for the entire period over LULC zones E3 and F3,
which is largely absent in forest and woodland regions (zone
A1). These regions are mainly characterized by savanna-
grassland systems in mountainous terrain. More importantly,
the PERSIANN-CCS does not capture the rainfall trend
during the winter season over the mountainous regions par-
ticularly after 2005. 3B42RT, on the other hand, provide rel-
atively better rainfall estimation in all regions for the study
period. However, it has a tendency to underestimate rainfall
for cropland systems during wet seasons. The underestima-
tion is more noticeable since July 2005 and this may be tied
with the implementation of new version of 3B42RT algo-
rithm as of 3 February 2005. The underestimation can be
traced to the amount of significant missed precipitation of
3B42RT in central and eastern part of MRB (as shown in
Figures 6 and 7).

[24] Figure 5 illustrates the percentage of runoff and
soil moisture production with respect to ground rainfall in-
tensity (mm d�1) during the summer seasons of 2006 and
2010. The percentage of soil moisture production remains
nearly constant for different rainfall rate in all study

zones. Because the soil moisture has longer duration mem-
ory, it is difficult to observe its moisture variation at
smaller time scales. Moreover, soil column moisture hold-
ing capacity is also bounded by a finite moisture holding
capacity (equal to porosity) and initial moisture content
[Raj and Hossain, 2010] that makes soil moisture insensi-
tive for high rainfall rates. As a result, the percentage of
soil moisture production on a daily basis displays very
low variation. On the other hand, as the rainfall intensity
increases, the percentage of runoff production grows expo-
nentially for various LULC systems with different growth
rate. The percentage of runoff production rate for forest
and woodland systems (Figure 5, zones A1 and B1) is
seen to increase slowly. The rate of rainfall at which the
runoff production exceeds the soil moisture is higher than
the other zones. In forest and woodland systems, the infil-
tration process is better facilitated than runoff which prob-
ably delays formation of runoff until the rainfall rate
increases to nearly 10 mm d�1. For the cropland system
(zones C2 and D2), the rainfall rate at which the runoff
production exceeds the soil moisture is smaller (about
5 mm d�1) potentially due to human impacts of irrigation

Figure 5. Percentage of runoff and soil moisture production for different rainfall intensities (ground
observation) for selected zones of summer 2006 (top six panels) and 2010 (bottom six panels).
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and other activities that facilitate runoff production more
quickly. In case of zones E3 and F3, the runoff production
exceeds the soil moisture at much smaller rainfall rate
(less than 3 mm d�1). In these zones, in addition to
LULC, the topographic features dominate the runoff pro-
duction. Because the VIC model simulates runoff without
directly incorporating the effects of topographic gradient,
this seems to indicate the predominance of the orographi-
cally enhanced rainfall-runoff process.

4.2. Spatial Nature of Errors

[25] Figures 6 and 7 present the spatial pattern of rainfall,
soil moisture, and runoff errors. Related to spatial error dis-
tribution, the three satellite rainfall products share certain
similarities. The southern and southeastern coast regions of
the Mississippi basin (Louisiana, Mississippi, and Tennes-
see) are dominated by missed precipitation during winter
season for all satellite rainfall products. In general, missed
precipitation is also the major source of total bias for the
eastern and central part of the basin during the winter season
for 3B42RT and CMORPH products. This is tied with the
occurrence of high snow cover in these regions during the
winter season and the weakness of PMW sensors to detect
warm rain processes.

[26] The western mountainous parts of the basin (upstream
of Missouri and Arkansas-Red basins) exhibit significant pos-
itive total bias during the winter season for the PERSIANN-
CCS product, which is mainly caused by false precipitation
and positive hit bias. In this region, the PERSIANN-CCS
product displays considerable false precipitation both in the
winter season of 2006 and 2010 signifying weakness of the
algorithm in producing false precipitation in moderate alti-
tude and highland regions. On the other hand, 3B42RT
shows a positive hit bias in the eastern part of MRB during
the same season but the positive hit bias and missed precipi-
tation cancel each other resulting in much smaller total bias
in the region. The soil moisture error during this season has a
similar pattern with the total bias but the magnitude of the
error is higher than the precipitation. Most of the error from
the rainfall is propagated into soil moisture and its magnitude
is amplified. There is a modest error signature observed on
the runoff due to less runoff production during the winter
season except for the PERSIANN-CCS product, which dis-
played smaller positive runoff error in the western edges of
the MRB due to significant false precipitation.

[27] For the summer season, the hit bias is the major con-
tributor to the total error in all parts of the basin except for
the northern part of Wisconsin and Minnesota, which are

Figure 6. Error component of three satellite rainfall products: total bias (E), hit bias (H), missed pre-
cipitation (�M), and false precipitation (F), soil moisture and runoff errors. (top) The winter of 2006
(D05–JF06). (bottom) Summer 2006 (JJA).
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also characterized by both missed precipitation and negative
hit bias. In general, during the summer season, CMORPH
and PERSIANN-CCS products overestimate the rainfall in
the central and western region of the basin. The soil moisture
error during the summer is not amplified like the winter sea-
son. A positive soil moisture error is observed in most parts
of the region comparatively similar to the total rainfall bias.
The occurrence of a large soil moisture error during the win-
ter season can be explained due to formation of snow over
the land surface because of false precipitation and positive
hit bias (Figures 6 (top) and 7 (top)). Less runoff error is
observed during the summer season for the 3B2RT product
and large positive runoff errors are produced in the central
and northern parts of the basin for CMORPH and PER-
SIANN-CCS due to the occurrence of false and positive hit
bias in the region. In general, this confirms that rainfall error
first propagates to soil moisture until the soil column reaches
its maximum holding capacity, after which the remaining
of error portion transfers to the runoff process [Raj and
Hossain, 2010].

4.3. Temporal Error Analysis

[28] Temporal error analysis was performed for the iden-
tified study zones based on LULC type. For each zone, the
spatial average error was computed for the analysis period
of 8 years (2003 to 2010). The time series plot (3B42RT

panel) also included specific timelines where different sen-
sors were added or decommissioned from the constellation
used for precipitation estimation [Huffman et al., 2010] to
help the reader understand the variation in performance as a
function of the sensors’ history. To distinguish the temporal
pattern of the errors clearly and avoid visual cluttering, a
31 day moving average is applied again (similar to Figure 4)
for the rainfall error components, runoff, and soil moisture
errors.

[29] Figure 8 shows that the temporal errors pattern for
forest and woodland systems. In these two particular zones
(zones A1 and B1), 3B42RT has positive hit bias most of
the time and high missed precipitation during the entire pe-
riod resulting in smaller total bias. The hit bias drops down
to negative during the summer seasons and gains during the
winter (Figure 8). As a result, the total error drastically
reduces during the summer and becomes slightly positive
during the winter. Generally, the total bias is dominated by
missed precipitation. Apart from that, there is no consis-
tently similar trend between the two zones for 3B42RT.
More interestingly, the soil moisture error follows the trend
of the total rainfall bias and the runoff error trails the hit
bias trend. Similar to the total bias, the soil moisture error
is reduced during the summer season due to high hit bias
and is highly negative during the winter due to significant
missed precipitation.

Figure 7. Same as Figure 6 except for the (top) winter (DJF) and (bottom) summer (JJA) of 2010.
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Figure 8. Time series of error components for three satellite rainfall products and simulated soil mois-
ture and runoff errors for forest and woodland systems for the period of 2003 to 2010 (MB: missed-rain
bias; FB: false-rain bias; HB: hit bias; TB: total bias; ROE: runoff error ; SME: soil moisture error).
Timeline for satellite sensors that was added or decommissioned from the constellation used for precipi-
tation estimation (hidden line with right arrow head, added timeline; hidden line with left arrow head,
decommissioned year; yellow smooth line, transition from GPCC to CAMS).
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[30] For the same LULC zones (A1 and B1), CMORPH
has a completely different temporal pattern compared to
3B42RT. The total error is dominated by hit bias. CMORPH
has strong positive total and hit bias during the summer
season and negative during the winter for zone A1. CMORPH
at zone B1 displays closer similarity with zone A1 except the
magnitude of positive total and hit bias during summer dimin-
ish in the later case. The absence of false precipitation that
contributes to positive hit and total bias results in the forma-
tion of weak positive bias. Unlike 3B42RT, the total bias for
CMORPH is controlled by the hit bias in both regions. The
PERSIANN-CCS data are characterized by a smaller amount
of false precipitation and positive hit bias in both zones. The
total error is mostly caused by hit bias and the presence of
small amplitude of false precipitation. Generally, for the case
of forest and woodland systems, the natures of errors are simi-
lar for CMORPH and PERSIANN-CCS because the hit bias
is the leading error, while 3B42RT is distinguished by strong
missed precipitation and mostly positive hit bias. Runoff and
soil moisture errors are dictated by the hit and total bias for
both CMORPH and PERSIANN-CCS.

[31] As seen in Figure 9, the drift of temporal errors for
the human land use system (cropland) shares considerable
common characteristics with forest and woodland system.
The total bias is largely controlled by missed precipitation
for 3B42RT, whereas for CMORPH and PERSIANN-CCS,
total errors are dominated by hit bias. In zone C2, missed
and false precipitation components are considerably higher
during the summer time for all satellite rainfall products
leading the hit bias to dominate the total error. By and
large, zone D2 is different from zone C2, and instead shares
significant error characteristics with zone A1. This shows
that LULC classification is not the only governing factor to
display more consistent error characteristics and that there
are other factors related to geographical features that need
to be considered. Such factors may include climatic factors
(Koppen climate class), topography (e.g., elevation, slope,
topographic index), and soil types (e.g., hydraulic proper-
ties and texture).

[32] Figure 10 presents the error characteristics of sa-
vanna and grassland systems (zones E3 and F3). Missed
precipitation is small in CMORPH and PERSIANN-CCS
for both zones; whereas false precipitation is large in both
regions except that it is small for 3B42RT in zone F3. For
the CMORPH product, hit bias is the dominant error com-
ponent which dictates the total bias, whereas due to signifi-
cant amount of false precipitation in PERIANN-CCS, the
total bias is fully dominated by false-rain bias. As seen in
Figure 10, the amplitude of the soil moisture error is higher
than the component or total errors during the winter time for
CMORPH and PERSIANN-CCS products. Despite the peak
amplitudes of soil moisture error during the winter period,
there is a systematic trend between the rainfall and soil mois-
ture errors throughout the analysis period (2003–2010). These
zones are mainly characterized by mountainous regions (up
to 2000 m a.s.l). As explained in section 4.1, CMORPH and
PERSIANN-CCS rainfall products overestimate the rainfall
in these zones during the wet season and winter season,
respectively (Figure 4, bottom). Due to mountainous nature
of the region, the overestimated rainfall from satellite
products is converted to snowfall by the hydrologic model,
resulting in the formation of significant snow pack depth

during the winter seasons particularly for the PERSIANN-
CCS product due to considerable false-rain bias (Figure 11,
bottom left).

[33] From the hydrologic modeling perspective, there are
potentially two main reasons for soil moisture error to be
high in these two particular zones. First, because of the for-
mation of significant snow pack depth, the soil column is con-
tinuously supplied with moisture from snow water equivalent
through melting during the spring season regardless of addi-
tional rainfall during the season. Second, a previous study on
evaluation of models for simulating snow cover extent has
shown that VIC-3L has the tendency to overestimate the
snow depth over mountainous regions [Sheffield et al., 2003],
which ultimately has an impact in soil moisture simulation
over highland regions.

[34] Correlation coefficients are used to determine the
degree to which rainfall error patterns are associated with soil
moisture and runoff errors. According to Figure 12, strong
correlations (above 0.8) are observed between runoff and
total error and hit bias for 3B42RT and CMORPH products
in all zones (Figure 12 (left), black and green bars). The run-
off has weak correlation with missed (less than 0.4) and mod-
erately correlated with false precipitation in the highland
region where false-rain bias is a common error. For PER-
SIANN-CCS, the degree of correlation of runoff with the hit
bias is weak for the highland region of the Mississippi basin
(zones E3 and F3) but it has strong correlation with total bias
and false precipitation in this region. As it has been men-
tioned above, false-rain bias is the leading error that domi-
nates the total bias for PERSIANN-CCS in these particular
regions (Figure 10).

[35] On the contrary, the soil moisture is also strongly
associated with missed precipitation, hit and total bias, and
sometime with false precipitation (right three panels, blue
and orange bars). Missed precipitation often occurs because
of light rain during summer and rain over snow covers dur-
ing winter seasons. Light rain is generally responsible for
the increase in simulated soil moisture content but does not
facilitate runoff generation unless the soil moisture reaches
saturation. Rainfall over snow cover is also not responsible
for runoff generation as the rain is converted in the model
to snow when it reaches the ground. On the other hand,
these types of events have significant effects on soil mois-
ture production, leading the soil moisture to depend on all
three error components. As a result, if the contribution of
missed precipitation to the total error is significant, runoff
error is dictated by the hit bias more than by the total error.

5. Conclusions and Recommendations
[36] In this study the total rainfall bias was decomposed

into hit bias, missed, and false precipitation for the entire
MRB. Spatial distribution of rainfall error components, soil
moisture, and runoff error were analyzed. For three dominant
land use scenarios, the temporal patterns of rainfall error
components, soil moisture, and runoff errors were character-
ized both qualitatively and quantitatively. For forest and
woodland and human land use system, the soil moisture was
mainly dictated by the total bias for 3B42RT, CMORPH,
and PERSIANN-CCS products. On the other hand, runoff
error was largely dominated by hit bias rather than the total
bias. This difference most likely occurred due to the presence
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Figure 9. Same as Figure 8, except for cropland system.
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Figure 10. Same as Figure 8, except for savanna-grassland system.
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of missed precipitation, which was a major contributor to the
total bias both during the summer and winter seasons.

[37] In summary, the tracing of error in hydrologic simu-
lation to rainfall error can be summarized into the follow-
ing key rules for product developers and end users.

[38] 1. The magnitude of the rainfall at which rate of pro-
duction of runoff exceeds the soil moisture depends on the
LULC type. The percentage of runoff production exceeds
soil moisture when the rainfall magnitudes are 10, 5, and
3 mm d�1 for forest and woodland, cropland, and savanna-
grassland systems, respectively. Since the magnitude of the
rainfall error propagating to the fluxes depends on the
amount of production of the fluxes (such as soil moisture,
runoff, and evapotranspiration), these threshold values are
ultimately useful to understand the proportion of the error
propagating to them, which could be applicable for hydro-
logically relevant merging of multisatellite rainfall
products.

[39] 2. For most cases, the hit bias and missed precipita-
tion are the major error components that dominate the total
bias during summer and winter, respectively. Moreover,
missed precipitation dictates the soil moisture error but not
the runoff error; indicating probably that missed precipita-
tion mostly occurs because of local convective type of rain-
fall that takes place for a relatively short period of time.
Additionally, the low level warm rain clouds are difficult to
be detected by the scattering channels of the passive micro-
wave sensor, often resulting in missed precipitation. The run-
off error is highly correlated with hit bias, which is a
common problem for CMORPH and PERSIANN-CCS over

mountainous regions during the heavy rain season. The
CMORPH product is characterized by positive hit bias in
most part of the basin during the rainy season. We speculate
the overestimation of precipitation arises because of the tech-
nique of merging IR and MW estimates in the ‘‘morphing’’
algorithm as it is pointed out by Tian et al. [2009].

[40] 3. For hydrologists and other data users, it is impor-
tant to realize the implication of satellite errors in soil
moisture and runoff simulation. The total bias alone does
not show the clear picture of rainfall or hydrologic error
structures. As the error components have different signs,
sometimes they cancel each other to produce a lower total
bias [Tian et al., 2009]. As a result, the magnitude of soil
moisture and runoff errors should be evaluated based on the
amplitude of error components rather than the total bias. For
hydrologic model simulation, the performance of the satel-
lite products with respect to the geographic location needs to
be assessed to make more accurate model prediction.

[41] Like any other modeling problem, the finding of this
study is likely sensitive to the quality of data that has been
assumed as ‘‘reference.’’ Particular to this study, the
gridded soil moisture and runoff from the VIC model are
assumed as the ‘‘synthetic’’ truth or reference. It is impor-
tant to recognize the limitation that this assumption is asso-
ciated with because the model’s structural or parametric
error is introduced into the hydrologic fluxes during the
simulation process. We believe that the task of input data
quality control, the method of model calibration, and vali-
dation implemented in the study prior to modeling are very
important to minimize such impacts.

Figure 11. Temporal pattern of snow pack depth and snow water equivalent for (left) zone E3 and
(right) zone F3 in Mississippi basin (Note: SWEE is snow water equivalent error; SPDE is snow pack
depth equivalent; ROE is runoff error; and SME is soil moisture error).
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[42] Despite the aforementioned limitation, this particu-
lar study has vital applications for algorithm developers
and data users to understand satellite rainfall, soil moisture,
and runoff errors in the continuum of time, space, and land
use/land cover. Such a wide range of investigation by char-
acterizing satellite rainfall error as a function of LULC
type, tracing back the source of errors in soil moisture and
runoff simulation, understanding the role of LULC on run-
off and soil moisture production, and error propagation are
expected to improve multisensor algorithms or multiprod-
uct merging. A natural follow-up question now is to explore
the nature of the errors as a function of additional criteria
such as climate type, soil type, and terrain features (topogra-
phy). These additional criteria are likely to have their own
unique and identifiable contribution to the performance sat-
ellite products and formation of runoff and soil moisture,
such as those observed herein for LULC. Thus, considera-
tion of additional governing features have merit in extending
merging of a multiproduct satellite data at ungauged regions
where these features are always known a priori. Work is
under way along this direction and will be reported in a
future study.
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